Telegram Group & Telegram Channel
👆Супер краткое содержание:

Докладчик подчеркнул, что, хотя большие языковые модели (LLM) демонстрируют значительный прогресс, их использование связано с высокими затратами на обучение и инференс, что ограничивает их применение. Вместе с тем, развитие больших моделей также способствовало прогрессу малых языковых моделей, которые содержат до 7 миллиардов параметров. Эти модели более доступны для использования и обучения на стандартном оборудовании, и они могут быть эффективными в специализированных задачах.

Докладчик, Иван Бондаренко, представил исследования и внедрение малых генеративных моделей в различных отраслях, включая образование и промышленность. Он отметил, что малые модели могут быть использованы для решения задач, связанных с пониманием и манипулированием текстом, и они могут быть эффективно интегрированы в пайплайны с использованием внешних баз знаний.

Иван также обсудил подходы к обучению малых моделей, такие как Curriculum Learning, и отметил, что малые модели могут быть дообучены на специализированных задачах, что делает их ценными для решения конкретных бизнес-задач. Он подчеркнул, что малые модели могут улучшить экономическую эффективность и ускорить инференс, а также быть полезными для фильтрации и подготовки запросов для больших моделей.

В заключении, Иван отметил, что малые языковые модели могут быть особенно полезны в отраслях, где требуется управление базами знаний, вопросно-ответные системы, особенно с чувствительными документами, и задачи, связанные с извлечением знаний.

10 ключевых слов из доклада
:

1. Малые языковые модели
2. Инференс
3. Пропускная способность
4. Генеративные модели
5. Дообучение
6. Экономическая эффективность
7. Знание о мире
8. Понимание текста
9. Retrieval-Augmented Generation (RAG)
10. Curriculum Learning

10 выводов на основе данного доклада:

1. Сложность и стоимость больших языковых моделей: Большие языковые модели требуют значительных вычислительных мощностей и затрат на обучение и инференс. Их использование может быть проблематично для многих организаций.

2. Проблемы с задержками и комплаенсом: Использование услуг ведущих поставщиков языковых моделей часто сопряжено с проблемами задержек и соблюдения регуляторных требований.

3. Развитие малых языковых моделей: Развитие больших языковых моделей стимулировало прогресс в малых языковых моделях, которые имеют до 7 миллиардов параметров и могут быть эффективно использованы большинством организаций на собственных мощностях.

4. Эффективность малых моделей: Малые языковые модели могут быть не менее эффективны, а иногда даже лучше больших моделей в специализированных областях применения. Они генерируют меньше галлюцинаций и имеют лучшую пропускную способность и дешёвые инференсы.

5. Использование малых моделей в различных отраслях: Компания «Сибирские нейросети» активно внедряет малые генеративные модели в образовательной деятельности, промышленности и других отраслях бизнеса.

6. Эволюция нейросетей: Нейросети имеют длительную историю, начиная с середины XX века, и их сложность постоянно увеличивается. Современные большие языковые модели достигают уровня сложности человеческого мозга.

7. Перенос обучения: Малые языковые модели способны к переносу обучения, что позволяет использовать знания, полученные при решении одной задачи, для решения другой задачи с меньшим набором данных.

8. Экономическая эффективность малых моделей: Малые языковые модели экономически эффективны, так как они не требуют мощного дата-центра и обеспечивают быстрый отклик.

9. Роль базы знаний: Использование внешней базы знаний позволяет снизить требования к размеру модели и улучшить управляемость знаний, что делает малые модели более подходящими для специализированных задач.

10. Внедрение малых моделей в различных отраслях: Малые языковые модели могут быть эффективно внедрены в управление базами знаний, вопросно-ответные системы, особенно для чувствительных документов, и для специализированных задач, где требуется дообучение модели на конкретных данных.



tg-me.com/opendatascience/2304
Create:
Last Update:

👆Супер краткое содержание:

Докладчик подчеркнул, что, хотя большие языковые модели (LLM) демонстрируют значительный прогресс, их использование связано с высокими затратами на обучение и инференс, что ограничивает их применение. Вместе с тем, развитие больших моделей также способствовало прогрессу малых языковых моделей, которые содержат до 7 миллиардов параметров. Эти модели более доступны для использования и обучения на стандартном оборудовании, и они могут быть эффективными в специализированных задачах.

Докладчик, Иван Бондаренко, представил исследования и внедрение малых генеративных моделей в различных отраслях, включая образование и промышленность. Он отметил, что малые модели могут быть использованы для решения задач, связанных с пониманием и манипулированием текстом, и они могут быть эффективно интегрированы в пайплайны с использованием внешних баз знаний.

Иван также обсудил подходы к обучению малых моделей, такие как Curriculum Learning, и отметил, что малые модели могут быть дообучены на специализированных задачах, что делает их ценными для решения конкретных бизнес-задач. Он подчеркнул, что малые модели могут улучшить экономическую эффективность и ускорить инференс, а также быть полезными для фильтрации и подготовки запросов для больших моделей.

В заключении, Иван отметил, что малые языковые модели могут быть особенно полезны в отраслях, где требуется управление базами знаний, вопросно-ответные системы, особенно с чувствительными документами, и задачи, связанные с извлечением знаний.

10 ключевых слов из доклада
:

1. Малые языковые модели
2. Инференс
3. Пропускная способность
4. Генеративные модели
5. Дообучение
6. Экономическая эффективность
7. Знание о мире
8. Понимание текста
9. Retrieval-Augmented Generation (RAG)
10. Curriculum Learning

10 выводов на основе данного доклада:

1. Сложность и стоимость больших языковых моделей: Большие языковые модели требуют значительных вычислительных мощностей и затрат на обучение и инференс. Их использование может быть проблематично для многих организаций.

2. Проблемы с задержками и комплаенсом: Использование услуг ведущих поставщиков языковых моделей часто сопряжено с проблемами задержек и соблюдения регуляторных требований.

3. Развитие малых языковых моделей: Развитие больших языковых моделей стимулировало прогресс в малых языковых моделях, которые имеют до 7 миллиардов параметров и могут быть эффективно использованы большинством организаций на собственных мощностях.

4. Эффективность малых моделей: Малые языковые модели могут быть не менее эффективны, а иногда даже лучше больших моделей в специализированных областях применения. Они генерируют меньше галлюцинаций и имеют лучшую пропускную способность и дешёвые инференсы.

5. Использование малых моделей в различных отраслях: Компания «Сибирские нейросети» активно внедряет малые генеративные модели в образовательной деятельности, промышленности и других отраслях бизнеса.

6. Эволюция нейросетей: Нейросети имеют длительную историю, начиная с середины XX века, и их сложность постоянно увеличивается. Современные большие языковые модели достигают уровня сложности человеческого мозга.

7. Перенос обучения: Малые языковые модели способны к переносу обучения, что позволяет использовать знания, полученные при решении одной задачи, для решения другой задачи с меньшим набором данных.

8. Экономическая эффективность малых моделей: Малые языковые модели экономически эффективны, так как они не требуют мощного дата-центра и обеспечивают быстрый отклик.

9. Роль базы знаний: Использование внешней базы знаний позволяет снизить требования к размеру модели и улучшить управляемость знаний, что делает малые модели более подходящими для специализированных задач.

10. Внедрение малых моделей в различных отраслях: Малые языковые модели могут быть эффективно внедрены в управление базами знаний, вопросно-ответные системы, особенно для чувствительных документов, и для специализированных задач, где требуется дообучение модели на конкретных данных.

BY Data Science by ODS.ai 🦜


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/opendatascience/2304

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Data Science by ODS ai 🦜 from ms


Telegram Data Science by ODS.ai 🦜
FROM USA